
Edge-based anisotropic mesh adaptation for
CFD applications

T. Coupez1, G. Jannoun2, J. Veysset3, and E. Hachem4

1 MINES ParisTech, UMR CNRS 7635, BP 207, 06904 Sophia-Antipolis, France
thierry.coupez@mines-paristech.fr

2 MINES ParisTech, UMR CNRS 7635, BP 207, 06904 Sophia-Antipolis, France
ghina.el jannoun@mines-paristech.fr

3 MINES ParisTech, UMR CNRS 7635, BP 207, 06904 Sophia-Antipolis, France
jeremy.veysset@mines-paristech.fr

4 MINES ParisTech, UMR CNRS 7635, BP 207, 06904 Sophia-Antipolis, France
elie.hachem@mines-paristech.fr

Summary. This paper presents an anisotropic mesh adaptation technique relying
on the length distribution tensor approach and an edge based error estimator. It
enables to calculate a stretching factor providing a new edge length distribution,
its associated tensor and the corresponding metric. The optimal stretching factor
field is obtained by solving an optimization problem under the constraint of a fixed
number of nodes. It accounts for different component fields in a single metric. With
such features, the method proves to be simple and efficient and can be easily applied
to a large panel of challenging CFD applications.

1 INTRODUCTION

Despite the increasing computer performances and the progress of compu-
tational fluid dynamics (CFD) in modelling and simulating time dependent
physical phenomena, numerical restrictions caused mainly by the complexities
of the simulations are still present.

Researchers are continuously investigating possible numerical strategies
to resolve this problem while maintaining a good level of accuracy and a
reasonable computational cost.

Anisotropic mesh adaptation has proved to be a powerful strategy to im-
prove the quality and efficiency in particular of finite element/volume meth-
ods. It enables the capture of scale heterogeneities that can appear in nu-
merous physical or mechanical applications including those having boundary
layers, shock waves, edge singularities and moving interfaces ( [1], [2], [3], [4],
[5]). These adaptive techniques allow the creation of extremely stretched and
highly directional elements which are key requirements for many CFD ap-
plications including Fluid-Structure Interaction (FSI), Multiphase flows and
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Mutliphysics problems. Moreover, they provide a good level of accuracy within
a reasonable degree of freedom.

Several approaches to build unstructured anisotropic adaptive meshes are
often based on local modifications ([6], [7], [8], [9]) of an existing mesh. In fact,
it mainly requires extending the way to measure lengths following the space
directions and can be done by using a metric field to redefine the geometric
distances. In parallel, theories of anisotropic a posteriori error estimation (i.e.
[10]) have been well developed, leading to some standardization of the adapta-
tion process; production of metrics from the error analysis of the discretization
error and steering of remeshing by these metrics.

It follows that most adaptive anisotropic meshing techniques take a metric
map as input. In practice, it is preferable to have a nodal metric map. Indeed,
during the remeshing operations, the elements are much more volatile than
the mesh nodes and therefore defining fields on a continuous basis ease their
reconstruction, interpolation or extrapolation.

The author in [1] has adopted a different route for the metric construction.
The latter is done directly at the node of the mesh without any direct infor-
mation from the element, neither considering any underlying interpolation.
It is performed by introducing a statistical concept: the length distribution
function. A second order tensor was employed to approximate the distribution
of lengths defined by gathering the information from the edges onto the node.
Using such a technique, the error is computed along and in the direction of
each edge.

In this work, we pursue further the approach developed in [1]. Rather than
considering several metric intersections as in [2], [3], [4], and thus having much
computations to perform, we propose in here to construct a single metric field.
The latter takes into account multicomponent fields (tensors, vectors, scalars)
charaterizing the structure and the physics of the problem. These can include
for instance the velocity norm, the velocity components, the temperature field
and the Level-Set function.

Other features of the proposed anisotropic mesh adaptation technique are
its automaticity and its independence from the problem at hand. It works
under the constraint of a fixed degree of freedom to provide a desired level of
accuracy while maintaining a low computational cost. With such advantages,
we show in this paper that the proposed approach is general and very use-
ful for approximating the solution of various Computational Fluid Dynamic
(CFD) problems including flows at high Reynolds number [11]. The numerical
examples show that it is well adapted to automatically capture all vortices,
flow detachments, boundary/interior layers and moving interfaces.

The paper is structured as follows: we retrace in section 2 the main steps
of the node based metric framework and describe the anisotropic mesh adap-
tation procedure governed by the length distribution tensor. In section 3, we
provide some 2D and 3D numerical results showing the applicability and effi-
ciency of the new highly parallelized anisotropic mesh adaptation.
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2 Anisotropic mesh adaptation

We follow the lines of [1] to present an a posteriori error estimate based
on the length distribution tensor approach and the associated edge based
error analysis. In this work, we emphasis the application of this technique to
different CFD problems.

2.1 Edge based error estimation

We consider a variable u ∈ C2(Ω) = V and Vh a simple P 1 finite element
approximation space:
Vh =

{
wh ∈ C0(Ω), wh|K ∈ P 1(K),K ∈ K}

where Ω =
⋃

K∈K
K and K is a

simplex (segment, triangle, tetrahedron, ... ).

We define X =
{
Xi ∈ Rd, i = 1, · · · , N}

as the set of nodes of the mesh and
we denote by U i the nodal value of u at Xi and we let Πh be the Lagrange
interpolation operator from V to Vh such that: Πhu(Xi) = u(Xi) = U i , ∀i =
1, · · · , N . As shown in figure 1, we denote the set of nodes connected to node
i by Γ (i) =

{
j , ∃K ∈ K , Xi,Xj are nodes of K

}
.

By introducing the notation: Xij = Xj−Xi and using the analysis carried
in [1], we can set:

∇uh ·Xij = U ij , (1)

Fig. 1. Length Xij of the edge joining nodes i and j.

||∇uh ·Xij

︸ ︷︷ ︸
Uij

−∇u(Xi) ·Xij || ≤ max
Y∈[Xi

,Xj
]

|H(u)(Y )Xij ·Xij | , (2)

where H(u) = ∇(2)u is the associated Hessian of u. Recall that taking
u ∈ C2(Ω) we obtain ∇u ∈ C1(Ω).
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Applying the interpolation operator on ∇u together with (1) we obtain a
definition of the projected second derivative of u in terms of only the values
of the gradient at the extremities of the edge:

∇ghX
ij ·Xij = gij ·Xij , (3)

where gh = Πh∇u, gi = ∇u(Xi) and gij = gj − gi.
Using a mean value argument, we set that: ∃Y ∈ [Xi,Xj ]|gij · Xij =
H(u)(Y )Xij ·Xij .
We use this projection as an approximation of the error along the edge:

eij = gij ·Xij . (4)

However this equation cannot be evaluated exactly as it requires knowing the
gradient of u and also its continuity at the nodes of the mesh. For that reason,
we resort to a gradient recovery procedure.

2.2 Gradient Recovery

Based on an optimization analysis, the author in [1] proposes a recovery gra-
dient operator defined by:

Gi = (Xi)−1
∑

j∈Γ (i)

U ijXij , (5)

where Xi = d
|Γ (i)|

∑
j∈Γ (i)

Xij ⊗ Xij is what we call the length distribution

tensor at node Xi. Note that this construction preserves the second order:∣∣(Gi − gi
) ·Xij

∣∣ ∼ (
H(u)Xij ·Xij

)
where Gi is the recovery gradient at

node i (given by (5)) and gi being the exact value of the gradient at node i.
The approximated error is evaluated by substituting G by g in (4):

eij = Gij ·Xij .

2.3 Metric construction from the edge distribution tensor

Taking into account this error analysis, we construct the metric for the unit
mesh as follows:

M i =


 d

|Γ (i)|
∑

j∈Γ (i)

Xij ⊗Xij



−1

.

For a complete justification of this result, the reader is referred to [1].
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2.4 Error behavior due to varying the edge length

We examine now how the error behaves when the length of the edges changes
by stretching coefficients sij ∈ S defined by :

S =
{
sij ∈ R+ , i = 1, · · · , N , j = 1, · · · , N , Γ (i) ∩ Γ (j) 6= ∅} .

To obtain a new metric depending on the error analysis, a new length for each
edge has to be calculated and then used for rebuilding the length distribution
tensor. An interesting way of linking the error variations to the changes in
edge lengths is done by introducing a stretching factor s ∈ R+ such that

{
X̃ij = sXij

||ẽij || = s2||eij || = s2||Gij ·Xij || (6)

where ẽij and X̃ij are the target error at edge ij and its associated edge length
respectively.
Following the lines of [1] we can simply define the metric associated with S
by:

M̃ i =
|Γ (i)|

d

(
X̃i

)−1

, (7)

where X̃i = d
|Γ (i)|

∑
j∈Γ (i) s2

ijX
ij ⊗Xij is the length distribution tensor and

|Γ (i)| is the cardinal of Γ (i). Let nij be the number of created nodes in relation
with the stretching factor sij and along the edge ij. When scaling the edges
by a factor sij , the error changes quadratically so that the number of created
nodes along the edge ij is given by:

nij =
(

ẽij

eij

)− 1
2

= s−1
ij .

As per node i, the created nodes along the different edge directions is given
by the following tensor:

N i =


 d

|Γ (i)|
∑

j∈Γ (i)

nij
Xij

∣∣Xij
∣∣ ⊗

Xij

∣∣Xij
∣∣


 .

So that the total number of created nodes per node i is:

ni = det


 d

|Γ (i)|
∑

j∈Γ (i)

nij
Xij

∣∣Xij
∣∣ ⊗

Xij

∣∣Xij
∣∣


 .

By considering the averaging process of the number of nodes distribution
function, the total number of nodes in the adapted mesh is given by
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N =
∑

i

ni.

A direct relation between N and e, assuming a uniform totally balanced error
along the edge ẽij = e = constant, is given by:

nij(e) = s−1
ij (e) =

(
e

eij

)− 1
2

.

Hence, for a node i we have

ni(e) = e−
d
2 det


 d

|Γ (i)|
∑

j∈Γ (i)

(
1

eij

)− 1
2 Xij

∣∣Xij
∣∣ ⊗

Xij

∣∣Xij
∣∣


 ⇔ ni(e) = e−

d
2 ni(1),

so that
N = e−

d
2

∑

i

ni(1).

Therefore, the global induced error for a given total number of nodes N can
be determined by:

e(N) =


 N∑

i

ni(1)



− 2

d

.

Thus, the corresponding stretching factors under the constraint of a fixed
number of nodes N are given by:

sij =
(

e

e(N)

)− 1
2

=




∑
i

ni(1)

N




2
d

e
−1/2
ij .

Fig. 2. Varying the edge in its own direction.
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2.5 Extension to multi-component field

Here we propose to construct a unique metric directly from a multi-component
vectors field containing, for instance, all the components of the velocity field
and/or different level-set functions. Consequently, we do not need to in-
tersect several metrics but to construct it using the following error vector
eij =

{
e1
ij , e

2
ij , · · · , en

ij

}
where n is the number of components.

Let u = {u1, u2, · · · , un}, Z = Vn and Zh = Vn
h . In the view of con-

structing a unique metric, the above theory is applied for each component
of u. It comes out immediately that the error is now a vector given by:
−→eij =

{
e1
ij , e

2
ij , · · · , en

ij

}
and then

sij =
( ||e(N)||
||−→eij ||

) 1
2

.

Here, the norm can be the discrete L2, L1 or L∞ norms.
For illustration, we combine into one global vector, both the level-set func-

tion and all components of the velocity field.
Denote by vh the finite element solution of the Navier Stokes equations

and Πhv its interpolant. In general, we have that

∃c > 0, ||vh − v|| ≤ c||Πhv − v|| .

Let vh(Xi) = V i ∈ Rd , d = 2, 3 and Y =
(

v
|v| , |v|, α

)
be the vector field

made of d + 1 components vector fields, with α the level-set function used to
localize a fluid-fluid or fluid-solid interfaces. We obtain for every node i,

ΠhY(Xi) =
(

V i

|V i| , |V
i|, α

)
= Yi.

Figure 3 shows a 2D adapted mesh obtained for the flow behind an airfoil
profile. The adaptation takes into account the velocity field (components and
norm) as well as the Level-Set function. As expected, it renders extremely
stretched elements along the fluid-solid interface and follows the components
of the velocity field. It shows the correct orientation and deformation of the
mesh elements.

3 CFD applications

In this section, we present several numerical examples to illustrate the flex-
ibility of the apporach dealing with high Reynolds flows and mutli-domain
problems having complex geometry. The numerical simulations were carried
out using the C++ CimLib finite element library (see [12]).



8 T. Coupez, G. Jannoun, J. Veysset, and E. Hachem

Fig. 3. Anisotropic refined fluid-solid interface of an immersed NACA0012.

3.1 Application to Incompressible flows at high Reynolds number

We begin to solve numerically the classical 2-D and 3-D lid-driven flow prob-
lems. This test has been widely used as a benchmark for numerical methods
and has been analyzed by a number of authors [13, 14]. Homogenous Dirichlet
boundary conditions for the velocity are imposed equal to one on the upper
boundary of the computational domain, i.e. at y = 1, and zero elsewhere.
The source term is set to zero. The viscosity is adjusted in order to obtain
Reynolds number of 1, 000, 5, 000, 10, 000, 20, 000, and 100, 000.

An important point to mention before we start is that the following mesh
adaptations are always performed for a fixed number of nodes. This turns
out to be an important advantage because it avoids a drastic increase in the
number of unknowns and in the computational cost. Therefore, for Reynolds
number of 1000, 5000 and 10, 000 we fixed the number of nodes N to be equal
to 10, 000 whereas, for Reynolds number 20, 000 and 100, 000 the number of
nodes is set to 20, 000. The adaptive process always starts from the uniform
mesh and is iterated every five time steps.

The results on the five respective meshes can be seen in Figure 4. Note
the concentration of the resolution not only along all the boundary layers but
also at the detachment regions. This reflects well the anisotropy of the solu-
tion caused by the discontinuity of the boundary conditions and the nature
of the flow. The elements at the central bulk of the cavity region around the
primary vortex are mostly isotropic and increase in size as the Reynolds num-
ber increases. Again, this reflects and explains how, for a controlled number
of nodes, the mesh is naturally and automatically coarsened in that region
with the goal of reducing the mesh size around the secondary vortices in the
bottom corners.

As the Reynolds number increases, the capturing of different secondary
vortices is surprisingly very good. The zoom on the right side of the cavity in
Figure 5 highlights how sharply the layers can be captured. It shows the cor-
rect orientation and deformation of the mesh elements (longest edges parallel
to the boundary). This yields to a great reduction in the number of triangles.
This results give confidence that the extension of the approach to take into
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Fig. 4. Anisotropic meshes at Reynolds 1000, 5000, 10, 000, 20, 000 and 100, 000

account all the velocity components holds very well and plays an important
role for transient flows.

Fig. 5. Zooms on the mesh close to the right wall

For comparisons, we plot the velocity profiles for Ux along x = 0.5 and
for Uy along y = 0.5 at Reynolds 10, 000. Figure 6 shows respectively that
the result is in very good agreement with a reference solution computed on
a 600x600 = 360, 000 points fixed mesh [13]. More results are presented and
analyzed in [11].
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Fig. 6. Comparison of velocity profiles in the mid-planes for Re = 10, 000. Left:
Velocity profiles for Ux along x = 0.5 . Right: Velocity profiles for Uy along y = 0.5.

We repeated the same experiments in 3-D for Reynolds numbers equal
to 1000, 3200 and 5, 000 respectively. The fixed number of elements is (∼
450, 000). Again, in 3-D where the flow characteristics are much more com-
plicated, all the boundary layers as well as the vortices are sharply captured
and identified as shown in figure 7.

Fig. 7. Streamlines snapshots and the adapted meshes at Reynolds 1000, 32000
and 5000
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In figure 8, we present different zoomed captures on the mesh to show
how the elements can be highly stretched along the direction of the layers.
This reflects well the accuracy and details of the resolution caused by the
discontinuity of the boundary conditions and the nature of the flow.

Fig. 8. Zooms on the mesh details inside the 3D cavity

3.2 Application to Fluid-Strcuture Interaction

We continue by investigating the flow around a NACA0012 airfoil in a channel
[16]. This study is considered as an important step to investigate the feasi-
bility of the proposed mutlicomponents feature. The purpose is to show the
flexibility of the method to deal with a large variety of geometries. Rather
than spending the effort on the mesh construction around the airfoil, we by-
pass this step and we consider the simplest rectangular domain. As mentioned
before, the NACA profile will be represented by a simple distance function.

Therefore, we consider two cases. In the first one, we use the classical
approach and we impose zero boundary conditions on the profile. So the effort
will be concentrated on the geometry and on building the fluid mesh while
well respecting the curvatures of the airfoil profile. In the second case, (i)
we consider a large simple channel domain, (ii) we compute analytically the
distance function of the NACA profile located at the center, (iii) we apply the
anisotropic mesh adaptation, and finally, (iv) we mix and assign the physical
properties. The obtained finite element meshes that are used in the two cases
are depicted in figure 9.

We apply the same conditions on both test cases and we compare the
solutions. The Reynolds number Re∞ based on the cord c is equal to 5000
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Fig. 9. Finite element meshes: only the fluid domain (up) - the air-NACA domain
(bottom).

Fig. 10. Comparisons of drag coefficients. (-) reference, (· · ·) present work

and the angle of incidence is set to 0. The number of elements is fixed to
45000.

As the proposed a posteriori estimation combines the simultaneous adap-
tivity on the level-set scalar field and the velocity field, boundary layers and
inner layers are automatically captured due to the anisotropically adapted
mesh exhibiting highly stretched elements.

A comparison of the drag coefficients using the classical and the new ap-
proach is presented in figure 10. A very good agreement between the two
numerical solutions is highlited by the snapshots of the norm of the veloc-
ity, the pressure fields and the streamlines computed on the entire domain
(fluid and structure) and on only the fluid domain in figures 11, 12 and 13
respectively.

3.3 Application to Immersed and Mutli-domain Approaches

Figure 14 and 15 present the parallel numerical simulation of unsteady flow
around a 3D helicopter in forward flight. The mesh generation algorithm al-
lows the creation of extremely anisotropic elements stretched along the inter-
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Fig. 11. Norm of the velocity calculated over the fluid domain (up) and the entire
domain (bottom).

Fig. 12. Pressure distribution calculated over the fluid domain (up) and the entire
domain (bottom).

Fig. 13. Streamlines distribution calculated over the fluid domain (up) and the
entire domain (bottom).
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face, which is an important requirement for flows behind complex geometries.
The final obtained mesh reflects the capability of the method to render a well
respected geometry in terms of curvature, angles and complexity. Contrary
to others techniques, this promising method can provide an alternative to
body-fitted mesh for very complex geometry.

Fig. 14. Numerical simulation of unsteady flow around a helicopter in forward
flight

This simulation is obtained using 96 2.4 Ghz Opteron cores in parallel
(linked by an Infiniband network). The mesh consists of ∼ 1.6M tetrahedral
elements and ∼ 300, 000 nodes. The purpose of this example is to confirm
the motivation behind pursuing such general approach. Indeed, it allows to
easily deal with a large diversity of complex shapes and dimensions without
mesh reconstructions and to handle the interfaces through anisotropic mesh
adaptation.

3.4 Application to 3D multiphase flows

In this section, three-dimensional simulation of the jet buckling phenomenon
is presented. Fluid buckling occurs when a highly viscous fluid drops vertically
towards a surface. This phenomenon is characterized by toroidal oscillations
of the flow after its contact with the surface. We consider this free surface
flow problem to demonstrate the efficiency and robustness of the numerical
method in modelling three-dimensional unsteady two-phase flows with high
density ratio.

The fluids are injected from 4 injectors at a two-meter height container.
The diameter of the injectors is 0.05m. Initially, we fill the container with the
first fluid which is presented in yellow till it reaches the height of 0.3m. The
used viscosity is 368Pa.s and the density is 1770kg/m3. Once the first fluid
reaches the prescribed height, the second one is then injected at the speed of
0.1m/s and falls under the gravity at 9.8m/s2. The second fluid, highlited in
green, has the same density as the first one, but slightly less viscous with a
viscosity of 352Pa.s. In this simulation, we fixed the number of nodes N to
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Fig. 15. Different snaphots of the flow around a helicopter in forward flight

Fig. 16. The evolution of multi-fluid buckling phenomenon.
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150, 000. Recall that solving an optimization problem under the constraint of
a fixed number of edges in the mesh offers an advantageous and useful tool
for practical 3D simulation of multiphase flow dynamics. The calculation is
executed on 32 processors during 2 days.

Fig. 17. Zoom on the anisotropic mesh with highly stretched elements at the
interfaces.

As shown in figure 16, the evolution of the falling fluid appears very re-
alistic rendering the fluid buckling phenomenon. In figure 17 we present dif-
ferent zoomed captures on the mesh to show how the elements can be highly
stretched. This reflects well the accuracy and details of the resolution caused
by the discontinuity and the nature of the flow. The anisotropic adaptive pro-
cedure modifies the mesh in a way that the local mesh resolutions become
adequate in all directions. Again, this reflects and explains how, for a con-
trolled number of nodes, the mesh is naturally and automatically coarsened
far from the interfaces with the goal of reducing the mesh size around the
multi-fluid buckling phenomenon.

4 Conclusion

We have shown in this paper that anisotropic adapted meshes with highly
stretched elements is well adapted to challenging CFD applications with com-
plex structure. The a posteriori error estimator is based on the length distri-
bution tensor approach and the associated edge based error analysis. We pro-
posed an important extension of the anisotropic theory to take into account
multicomponent fields within a single metric. It was successfully addressed
for the incompressible Navier-Stokes equations at high Reynolds numbers as
well as for multi-domain problems. All the meshes are obtained by solving an
optimization problem under the constraint of a fixed number of nodes. The
method proves to be capable of automatically producing boundary layers,
detecting all the main directional flow features and accuratly capturing the
interfaces. Further investigations will take into account the performance of the
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presented adaptive method in terms of the computational cost, the speed-up
and the frequency of remeshing.
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